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What do we really know 
about DM?

1. Cosmological abundance.

2. It’s stable (or at least very long-lived).
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Clue #1: WMAP

ΩDMh2 = 0.1109± 0.0056

ΩBh
2 = 0.02258+0.00057

−0.00056

This could be 

1.  A remarkable coincidence. 

2.  An anthropic selection effect?  [Freivogel (2008)]

3.  An indication of an underlying origin.

The amounts of dark and visible matter are comparable. 
WMAP 7 tells us:

[Larson, et al. (2010)]

ΩDM

ΩB
≈ 5

DMB ratio:
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Clue #2: BSM physics has a 
love/hate relationship with the 

proton

• New physics models often predict an intriguing 
signal...

The only problem is...
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Think globally?  Act locally.

• New quarks to cancel anomalies.

• To avoid stable colored particles, introduce 
new particle X to facilitate their decay.

• X is automatically stable.

• Baryogenesis requires a DM asymmetry.

• Shared gauge interactions with baryons predict 
novel signatures: monojets and low mass DD.

✴Promote U(1)B to a local gauge symmetry.



Gauging baryon number

• Older examples: 

• Carone and Murayama 1994; Bailey and 
Davidson 1995; Aranda and Carone 1998. 

• More recently:

• Dulaney, Fileviez-Perez and Wise (2010); 
Buckley, Fileviez-Perez, Hooper, and Neil 
(2011).
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Baryogenesis implies a DM 
asymmetry

• The only global symmetry is a non-anomalous 
U(1)D:

• Unlike conventional ADM, the asymmetries are 
generated simultaneously.

• Recent work by: Bell, Petraki, IMS, Volkas 
[1105.3730]. 

D = Bq + Bq′

nB != nB ⇒ nX != nX
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DIRECT DETECTION BOUNDS

annihilation physics
↕

DM-quark 
scattering
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•Velocity distribution must be consistent with 
NFW:

f(v) ∝
[
exp

(
v2

esc − v2

kv2
0

)
− 1

]k
[Lisanti, Strigari, Wacker, 

Wechsler (2010)]

High-velocity tail is important for light DM.
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8πv2

(
qAg2

B
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B

)2 [
Av2 + Bq2

]
F 2(ER)

AXIAL CASE:

DD imposes: 
no bound



LEP + B-factories

! decay Z hadronic width
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Monojets at the Tevatron

pp → "ET + j

•For light DM, the Tevatron and the LHC are the 
world’s best DD experiments [Goodman, et al. 
(2010); Bai, Fox, Harnik (2010)]. 
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q
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q X

q X

g

See Luca’s talk.
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CONCLUSIONS

• Gauging baryon number saves the proton + automatic DM 
candidate charged under baryonic force.

• Simultaneous generation of dark and visible asymmetries.

• Consistent with bounds from B-factories, LEP, mono-jet 
Tevatron searches, and direct detection for : 

• GeV-scale DM with a GeV-scale mediator.

• LHC and direct detection will probe much of the remaining 
parameter space. 
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Absence of stable colored 
particles

• Exotic quarks must decay...

L ⊃ ucdcd′cX

Λ
q′ → qqX

Decay operator ↔ asymmetry transfer operator

X± ∼
(

1, 1, 0,±
(

2
3
− 1

N

))
Introduce:


